Some Constructions Related to Rees Matrix Rings
نویسنده
چکیده
Simple rings with a one-sided minimal ideal may be represented as Rees matrix rings, and conversely. The latter are defined as I ×Λ matrices over a division ring with only a finite number of nonzero entries with certain addition and multiplication. For Rees matrix rings we construct here their isomorphisms, their translational hulls and isomorphisms of the translational hulls, all this in terms of certain type of matrices of arbitrary size over division rings. We also study r-maximal Rees matrix rings. This theory runs parallel to that of Rees matrix semigroups.
منابع مشابه
On derivations and biderivations of trivial extensions and triangular matrix rings
Triangular matrix rings are examples of trivial extensions. In this article we determine the structure of derivations and biderivations of the trivial extensions, and thereby we describe the derivations and biderivations of the upper triangular matrix rings. Some related results are also obtained.
متن کاملAutomatic structures for semigroup constructions
We survey results concerning automatic structures for semigroup constructions, providing references and describing the corresponding automatic structures. The constructions we consider are: free products, direct products, Rees matrix semigroups, Bruck-Reilly extensions and wreath products.
متن کاملResults on Generalization of Burch’s Inequality and the Depth of Rees Algebra and Associated Graded Rings of an Ideal with Respect to a Cohen-Macaulay Module
Let be a local Cohen-Macaulay ring with infinite residue field, an Cohen - Macaulay module and an ideal of Consider and , respectively, the Rees Algebra and associated graded ring of , and denote by the analytic spread of Burch’s inequality says that and equality holds if is Cohen-Macaulay. Thus, in that case one can compute the depth of associated graded ring of as In this paper we ...
متن کاملRees Algebras of Diagonal Ideals
There is a natural epimorphism from the symmetric algebra to the Rees algebra of an ideal. When this epimorphism is an isomorphism, we say that the ideal is of linear type. Given two determinantal rings over a field, we consider the diagonal ideal, kernel of the multiplication map. We prove in many cases that the diagonal ideal is of linear type and recover the defining ideal of the Rees algebr...
متن کاملOn Jordan left derivations and generalized Jordan left derivations of matrix rings
Abstract. Let R be a 2-torsion free ring with identity. In this paper, first we prove that any Jordan left derivation (hence, any left derivation) on the full matrix ringMn(R) (n 2) is identically zero, and any generalized left derivation on this ring is a right centralizer. Next, we show that if R is also a prime ring and n 1, then any Jordan left derivation on the ring Tn(R) of all n×n uppe...
متن کامل